【要約】

修士課程優秀論文

正常乳腺および乳がんにおける RB の代謝・発がんシグナル制御効果

龔 麟 祥

金沢大学がん進展制御研究所 腫瘍分子生物学

The diverged effects of RB inactivation on metabolic and oncogenic signaling in mammary epithelium and cancer

Gong Linxiang

はじめに

がん抑制遺伝子RB1は、アダプター分子として転写 因子, クロマチン修飾因子などに作用することにより 遺伝子発現を調節する. 特に、E2Fファミリーに属す る3つの転写因子 (E2F1, E2F2, E2F3) に結合し、その 機能を抑制することによって細胞周期進行を制御す る. 点変異や欠失によるRB1の機能喪失は、発がんに 寄与すると考えられるが、そのドライバー変異として の役割は小細胞肺がんや網膜芽細胞腫に限定される. 一方、大多数の固形がんにおけるRB1の機能喪失は悪 性進展過程において起こる¹⁾. Rb1へテロ型欠失マウス に生じるC細胞腺腫におけるInk4A または N-rasの追 加欠失は、Rb1単独不活性化によって惹起される細胞 老化をキャンセルし、これをC細胞腺癌へと進展させ る²⁾. また一方で,正常線維芽細胞においては, RAS変 異体の発現が細胞老化を誘導するのと同様の機序で, RB1機能喪失にともなう野生型RASの活性化が発がん を抑制することが示唆されている3.しかしながら, 細胞老化誘導において中心的な役割を果たすINK4A遺 伝子を欠損場合において、RB1の機能喪失が正常上皮 細胞の形質転換を促進するのかどうか不明であった. そこで、INK4A欠損正常乳腺上皮細胞株においてRB1 を欠損させ、細胞形質を詳細に解析した.

結 果

正常乳腺上皮細胞株MCF10Aに対してレンチウイルスを用いてRB1をノックダウンした結果、上皮細胞様の形態が失われると同時に、コロニー形成数が低下した(図1) 4 . 加えて、上皮細胞の特徴の1つである β カテニンの細胞膜への局在も失われた、上皮間葉転換

(EMT) が起きた可能性を検証するために、EMT関連遺伝子の発現を測定したが変化しなかった.一方,RB1 / ックダウンは,サイクリンファミリー分子やGeminin,CDT1 の発現低下と同時にp27の発現増加を引き起こした.加えて,増殖性細胞のマーカーであるKi-67陽性細胞数を減少させた(図2) 4 . さらに,細胞老化のマーカーであるsenescence-associated β -galactosidase活性やDNA ϕ メージの指標である ϕ -H2AX,p21,p53の発現は認められなかった.これらの結果は,RB1 欠損が乳腺上皮細胞を静止状態に誘導したことを示唆した.

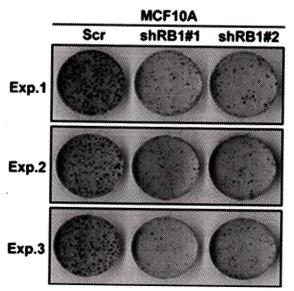


図1. コロニーフォーメーションアッセイ Scrarmble shRNA, RB1 shRNA#1, RB1 shRNA#2を発現 させたMCF10A細胞のコロニーをギムザ染色した画像.